What is Scalability in Cloud Computing

What is Scalability in Cloud Computing

spark k8 solutions

Kubernetes is a critical component of the modern hybrid, multi-cloud architecture in today’s enterprises. Big data organizations increasingly rely on Kubernetes to automatically manage scaling and application deployments within their containerized environments. Due to its speed and flexibility, Spark is the #1 big data application running on Kubernetes, according to a recent survey of enterprise users. In just a few lines of code, data scientists and engineers can use Spark to parallelize large amounts of work across a big data cluster. However, as big data applications move from Spark on legacy systems to Spark on Kubernetes, Spark application performance often suffers.

While Kubernetes can reduce operating costs and make deployment more agile, it also increases the management complexity of a dynamic and diverse combination of virtual machines, containers, and applications. If teams don’t have comprehensive visibility and automation built into their big data infrastructure, reliability and performance issues can be difficult to predict and diagnose. This can often result in additional, significant operational cost.

Spark on Kubernetes Full-Stack Observability and Optimization

Pepperdata big data solutions provide comprehensive visibility into Kubernetes health and performance in real time. Managers, developers, and operations teams can monitor cluster resource usage and optimize the performance of their clusters through a self-service portal. Through this portal they can also manually tune Spark applications while autonomously optimizing resources at run time.

Traditional infrastructure monitoring and manual tuning methods present significant scaling and speed limitations. Pepperdata automatically optimizes Kubernetes resources while providing a correlated and granular understanding of the applications and infrastructure. For Spark on Kubernetes, Pepperdata provides:

  • Autonomous optimization of resources and workloads on Amazon EKS, HPE Ezmeral, and Red Hat OpenShift
  • Application and infrastructure observability for Spark on EKS, OpenShift, and YARN
  • Pepperdata self-service dashboard so developers can manually tune using recommendations for speed or resource utilization
  • Detailed usage attribution for IT chargeback
Spark on Kubernetes, Spark, Kubernetes, EKS, GKE

Deliver the Best Price/Performance for Spark Workloads

The Pepperdata dashboard enables your teams to visualize Kubernetes data and get actionable insights and alerting. Because Pepperdata solutions are designed to scale, teams can easily keep tabs on their Kubernetes environments—whether they’re running tens or thousands of nodes.

Pepperdata machine learning across clusters, containers, pods, nodes, users, and workflows gives you a complete understanding of your environment. This combination of manual and autonomous tuning delivers the best price/performance for Spark apps.

Additionally, full-stack observability provides you with actionable information to debug complex Spark applications, and autonomous optimization ensures that the compute resources are used efficiently. In addition to knowing that there is an issue, understand why, and quickly resolve it.

Although many monitoring vendors claim to have full observability capabilities, they typically only offer a portion of the picture and not complete observability. Pepperdata big data performance solutions provide you with the observability you need to optimize the performance of your big data deployment and improve collaboration across your teams.

Curve Pattern

Take a Free Thirty-Day Trial to See What Big Data Success Looks Like

Pepperdata products provide complete visibility and automation for your big data environment. Get the observability, automated tuning, recommendations, and alerting you need to efficiently and autonomously optimize big data environments at scale.