
Pepperdata Capacity Optimizer for Apache Airflow

© 2025 Pepperdata, Inc. All rights reserved.

The Challenge of Resource Utilization  
with Apache Airflow

Apache Airflow is a powerful open-source platform for

orchestrating and scheduling data workflows. It provides a

framework that enables users to manage, run, and monitor

their workflows.

A significant challenge with Airflow clusters is that they often

suffer from overprovisioning of CPU and memory, leading to

low utilization and wasted spending. This occurs because the

KubernetesExecutor launches a separate pod for each task,

and task resource needs vary. DevOps teams, finding it

cumbersome to set individual task resources, often configure

a single, large global pod size. This results in hundreds of

overprovisioned tasks, causing significant wasted spend,

unused capacity, and low resource utilization—especially

when multiplied over hundreds of workloads launching

simultaneously.

Realize up to 40% Cost Savings for Apache Airflow with Dynamic Resource Optimization

The Solution: Dynamic Resource
Optimization with Pepperdata 
Capacity Optimizer

Pepperdata Capacity Optimizer for Apache Airflow

enables more work on fewer nodes by

 Reducing resource requests so more pods can

be packed on existing node

 Providing the scheduler with visibility into

utilized resources so that it can schedule more

pods on existing node

 Packing all existing nodes first before enabling

the autoscaler to launch new nodes

The result is reduced infrastructure cost in the

cloud, increased resource utilization, and more

workloads running on the same cluster.

Scheduler

Running Pending
Pending

Scheduler

 Pending pods are now launched
to fill actual available resources.

 Resource utilization is increased,
costs are reduced, and throughput
performance is improved.

 The scheduler immediately
becomes aware of existing but
unused node capacity.

Scheduler

Running

With Capacity Optimizer Enabled

Before Capacity Optimizer is enabled, the scheduler sees all instances as full. The moment Capacity Optimizer is enabled,

more pods automatically run per node since the scheduler now perceives available capacity and can launch pending pods

based on actual utilization—resulting in nodes running at their greatest utilization and lowest cost.

© 2025 Pepperdata, Inc. All rights reserved.

Cost-Effective Airflow Operations 

Improved Throughput 

Significantly More Efficient Autoscaling 

No Need For Manual Tuning, Recommendations, or Application Code Changes 

Eliminate the cost and waste resulting from task pods allocating more resources than
they ever use.

Reduce pod resource requests automatically so that all existing nodes are continuously
optimally packed at optimal capacity.

Ensure new nodes are provisioned only when existing nodes are fully utilized.

Free developers from optimization tasks so they can focus on revenue-generating
projects and innovation.

Capacity Optimizer Benefits for Apache Airflow

shorter boilerplate that metnions SoC2

info@pepperdata.com

www.pepperdata.com
Start a Free Trial

Send an Email

Pepperdata, Inc.

530 Lakeside Drive

Suite 170

Sunnyvale, CA 94085

© 2025 Pepperdata, Inc. All rights reserved.

Deployed on over 30,000+ clusters, Capacity Optimizer
optimizes resources in some of the largest and most
complex environments in the world, providing more
pods per node in Kubernetes environments. Since 2012
Pepperdata has helped companies ranging from
startups and mid-sized ISVs to top enterprises such as
Citibank, Autodesk, Magnite, Royal Bank of Canada,  
and members of the Fortune 10 save over $250 million.
For more information, visit www.pepperdata.com.

About Pepperdata

info@pepperdata.com

www.pepperdata.com
Start a Free Trial

Send an Email

Pepperdata, Inc.

530 Lakeside Drive

Suite 170

Sunnyvale, CA 94085

Supported
Workloads and
Environments

Supported
Schedulers

Supported
Autoscalers

 Apache Spark, Apache Flink, Apache Airflow, Jobs,
JobController, and CronJobs, Open Source Kubernetes,
Amazon EKS, Google GKE, Microservice

 Apache Spark on Cloudera Data Engineering
 Amazon EMR, Google DataPro
 Cloudera Data Platform (CDP)

 Default scheduler on Amazon EMR and EKS and
Google GK

 Apache YuniKorn on Amazon EK

 Amazon EMR Managed Autoscaling and Custom
Autoscaling Policy on Amazon EM

 Cluster Autoscaler and Karpenter on Amazon EK
 Cluster Autoscaler with and without Node Auto-

Provisioning (NAP) on Google GKE

mailto:info@pepperdata.com
https://www.pepperdata.com/free-trial-pepperdata-capacity-optimizer
http://www.pepperdata.com
mailto:info@pepperdata.com
https://www.pepperdata.com/free-trial-pepperdata-capacity-optimizer

