
The Cloud Cost 
Optimization Imperative 
for Data-Intensive 
Workloads  
on Amazon EMR  
and Amazon EKS

Top challenges and solutions for modern, 
large-scale data environments

WHITE PAPER



Table of Contents

1

9

6

4

2

1

Introduction: The Challenge of Cloud Cost Optimization 

for Data-Intensive Workloads

The Fundamental Problem at the Application Level:  

Waste Inside the Application

How Pepperdata Cost Optimization Automatically Mitigates Cloud Waste  

Inside Applications

Pepperdata Capacity Optimizer: Automated Instance Hour Reduction  

in Real Time

Pepperdata Observability

Pepperdata Security Policies, Procedures, and Certifications

Conclusion: Solving the Challenge of Cloud Cost Control

Appendices

Resources

10

11

12

15



The advantages of migrating compute-intensive workloads to the cloud have become 
abundantly clear. Organizations can enjoy near-infinite scalability on demand, agility in 
deploying new applications, and enhanced security and analytics, all combined with 
pay-as-you-go pricing. Gartner predicts that worldwide spending on the public cloud 
will reach nearly $700 billion in 20241, a 20.4 percent increase over 2023, as spending 
in key segments shifts to the public cloud.


While the cloud provides on-demand, elastic, and highly scalable computing resources, 
cost overruns do occur, often as a result of overprovisioning. Overprovisioning, 
especially with data-intensive workloads such as Apache Spark, invariably results in 
resource underutilization and waste, which can be difficult to identify and eliminate.


Not surprisingly, a recent survey found a 39 percent year-over-year increase in the 
amount of cloud spend over budget2, a widespread problem that affects even the most 
sophisticated IT teams. It has been further estimated that 30 percent or more of cloud 
computing services will end up wasted3. The FinOps Foundation even reported that 
reducing waste has become the highest key priority for FinOps practitioners4.


To address these issues and realize the promise of running data-intensive workloads in 
the cloud, organizations are adopting a variety of strategies to minimize waste, control 
costs, and rein in budgets:

Business Leve�

Infrastructure Leve�

� Taggin�
� Cost allocatio�
� Chargebacks/showback�
� Usage monitoring


� Rightsizing instance�
� Deploying AWS Karpente�
� Implementing financial optimizations, 

such as Spot Instances, Reserved 
Instances and Savings Plans

Application Platform Leve�

Application Leve�

� Cluster Autoscalin�
� Migrating to a serverless 

architecture
 

� Manually tuning applications and 
configuration�

� Enabling Spark Dynamic Resource 
Allocation

The Challenge of Cloud Cost 
Optimization for Data-Intensive 
Workloads

INTRODUCTION

1 Gartner Forecasts Worldwide Public Cloud End-User Spending to Reach $679 Billion in 2024

2,3 Flexera’s State of the Cloud 2024 Report

4 FinOps Foundation’s State of FinOps 2024 Report

© 2024 Pepperdata, Inc. All rights reserved. Page 1

https://www.gartner.com/en/newsroom/press-releases/11-13-2023-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-679-billion-in-20240
https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Organic%20Search
https://data.finops.org/#11900


Many practitioners believe that some combination of these strategies will minimize the 
cost of running data-intensive workloads such as Spark in the cloud. However, the 
fundamental problem with all of these options is that they are not able to address a 
specific dilemma: Apache Spark executors waste requested resources inside an 
application. 


Waste inside the application occurs because application provisioning is static and set 
for peak usage throughout an application’s run, even though application resource 
usage actually varies dramatically over time. Even an optimally-chosen allocation 
level set at the peak of the application’s utilization will result in unused resources and 
waste since most applications typically run below peak levels most of the time.


When developers request peak levels of resources, the scheduler gives them exactly what 
they asked for. The scheduler distributes resources based on allocation requests rather 
than actual usage, and has no insight into the fact that the allocated resources are 
not being used. As far as the scheduler is concerned, the developer asked for a certain 
level of resources, so that level of resources will be utilized.

Figure 1: Most applications run at peak provisioning levels for only a small fraction of time, 
resulting in waste. Even if a developer requests resources accurately for peak, the autoscaler will 
grant the resources based on the request rather than for the actual utilization of resources 
required to run the application.

The Fundamental Problem 
at the Application Level:  
Waste Inside the Application

Page 2© 2024 Pepperdata, Inc. All rights reserved.



As a result, the scheduler “sees” a fully saturated cluster and interprets that as a cluster 
unable to accept any additional workloads. Then, when more applications come along 
in an environment that is already seen by the scheduler as fully saturated, the 
scheduler has only two options�

�� The scheduler can put the new workloads or applications into a queue or pending 
state until resources free up, reducing throughput and performance�

�� The scheduler can direct the autoscaler to spin up new instances at additional cost, 
even though existing instances are actually not fully utilized, resulting in unneeded 
spend for unneeded resources.



Figure 2: Within a cluster, the 
scheduler only considers the 
allocated resource levels, not 
those that are actually being 
used at any given time. The 
allocated but unused resources 
represent waste.

Figure 3: When the system 
appears to the scheduler to be 
fully saturated, the scheduler 
might leave new applications 
waiting in queue, delaying their 
execution and leading to 
reduced throughput and 
unnecessary cost for the 
unused capacity.

At a Cluster Level, the Scheduler Only Sees Allocations. 
Instances Appear Almost Fully Utilized


Figure 4: When the system 
appears to the scheduler to be 
fully saturated, the scheduler 
might spin up new instances—
at additional and unnecessary 
cost—to process them.

Or New Instances Are Launched (At Extra Cost)  
To Accommodate Those Apps


Because Instances Appear Fully Utilized, 
They're Put In Queue When New Apps Come Along

Page 3© 2024 Pepperdata, Inc. All rights reserved.



In either case, the result is inefficiency and waste in the system as a result of the 
inherent inefficiencies inside Spark applications. This waste cannot be optimized out 
with any of the common strategies previously mentioned. 


While the common strategies used to optimize Spark—such as Cluster Autoscaling, 
instance rightsizing, Spark Dynamic Allocation, and manual tuning—provide a level of 
savings or optimization, none of these solve the fundamental problem of Spark 
overprovisioning and waste inside executors when the application is not at peak. 
None of these addresses the issue of resources being assigned based on allocation 
rather than usage levels.


Even the most efficient infrastructure in the world—one in which every waste 
mitigation strategy is implemented—will then continue to run with waste since 
overprovisioned applications use infrastructure inefficiently. And these inefficiencies 
can be significant. On average, typical Spark applications can be overprovisioned by up 
to 47 percent or sometimes more.

How Pepperdata Cost 
Optimization Automatically 
Mitigates Cloud Waste  
Inside Applications

Page 4© 2024 Pepperdata, Inc. All rights reserved.

Pepperdata Capacity Optimizer reduces waste inside applications by addressing the 
critical gap between allocated and actual resource utilization inside an application.


Capacity Optimizer’s Continuous Intelligent Tuning provides a real-time stream of 
data which enables cluster scheduler decision-making to be based on actual usage 
instead of allocated usage. This ensures that clusters use all available resources for 
each workload before adding new nodes or pods. More workloads can run on the same 
node or pod, increasing efficiency.


Working autonomously and continuously in the background, Capacity Optimizer uses 
patented algorithms to�

Only pay for what you use when 
CPU and memory are optimized in real tim�

Reclaim hours of engineering 
time that can be reallocated to new projects and business growth initiative�

Apply optimization easily 
without disruption to meet price/performance SLAs

� Immediately Reduce Instance Hours and Cost: 

� Save Engineering Time With No Manual Tuning: 

� Improve Application Efficiency Without Code Changes: 

https://www.pepperdata.com/blog/myth-1-of-apache-spark-optimization-observability-monitoring/
https://www.pepperdata.com/blog/myth-1-of-apache-spark-optimization-observability-monitoring/
https://www.pepperdata.com/resource/aws-on-pepperdata
https://www.pepperdata.com/resource/aws-on-pepperdata


Without Pepperdata, instances may run 
at a fraction of their potential utilization. 
This is because the scheduler is only 
aware of allocated resources and is not 
aware of what is actually being used, and 
therefore it cannot pack additional jobs 
onto nodes/pods that appear to be fully 
allocated.

Pepperdata removes the blinders from 
the scheduler to empower it to pack 
instances according to their actual 
utilization. Pepperdata’s Continuous 
Intelligent Tuning empowers the 
scheduler to make full use of existing 
instances, increasing capacity and 
throughput and reducing cost.

Figure 5: Pepperdata enables nodes to run at the greatest capacity and highest efficiency on 
Amazon EMR and Amazon EKS.

As a simple example, consider an overprovisioned application that requires 10 GB of 
memory at peak, but that peak time may only represent 20 percent of the application’s 
runtime. The other 80 percent of the time, Capacity Optimizer can reclaim those 
unused resources for other applications. By finding the difference between allocated 
and used capacity in real time, Capacity Optimizer can instruct the YARN or Kubernetes 
scheduler to process waiting applications, thus providing greater throughput across 
the cluster.


Augmented Autoscaling


Capacity Optimizer also augments Cluster Autoscaling by ensuring that new instances 
are launched only when the existing instances are fully utilized. The result: CPU and 
memory are autonomously optimized to run more workloads to increase savings.


Capacity Optimizer eliminates the need to change applications based on system-
generated recommendations by working immediately in real time to keep instances at 
their optimal utilization with no code changes required.


Installed via a simple bootstrap script into a customer’s Amazon EMR environment or 
via Helm chart in an Amazon EKS environment, Capacity Optimizer runs autonomously 
and safely in the customer’s virtual private cloud (VPC) in the background, providing a 
dashboard view of the utilization level of each cluster.

Nodes running suboptimally 
WITHOUT Pepperdata

Nodes running at greatest capacity 
WITH Pepperdata

Page 5© 2024 Pepperdata, Inc. All rights reserved.



Page 6© 2024 Pepperdata, Inc. All rights reserved.

Capacity Optimizer thus provides two immediate cost-cutting and time-saving benefits�

By maintaining clusters in their sweet spot of optimal utilization based on actual 
resource usage, Capacity Optimizer reduces hardware usage for Amazon EMR and 
EKS an average of 30 percent. The decreased instance hours translate directly to 
greater efficiency and reduced costs�

Capacity Optimizer works autonomously in real time, so no application changes or 
manual interventions are ever necessary. Development teams are freed from tuning 
applications so they can focus on high-value, innovative activities to grow their 
organizations.

�� Cost Savings: Decreased Instance Hour Consumption 

�� Time Savings: No Manual Tuning, No Recommendations, and No Application 
Code Changes 

Which Specific Costs are Reduced for Amazon EMR?


Let’s take a look at what we mean when we say Pepperdata Capacity Optimizer reduces 
instance hour costs. For Amazon EMR, instance hour costs are the sum of Amazon EC2 
costs and Amazon EMR service costs. This cost is split approximately 80/20, as 
measured by Amazon’s published per-hour rates by instance type5, with EC2 
comprising 80 percent of the total instance hour costs and EMR comprising 20 percent. 
The cost reduction delivered by Capacity Optimizer is proportional to the overall 
instance hour cost, of which approximately 80 percent is Amazon EC2.

As we have seen, Pepperdata Capacity Optimizer delivers 30-47 percent greater cost 
savings for data-intensive workloads such as Apache Spark on Amazon EMR with no 
application changes. Let's drill down a bit more into how it works.

Pepperdata Capacity Optimizer: 
Automated Instance Hour 
Reduction in Real Time

5 Amazon EMR Pricing

https://aws.amazon.com/emr/pricing/


How Pepperdata Capacity Optimizer Works Inside AWS


In Amazon EMR environments

In Amazon EKS environments

Pepperdata Capacity Optimizer works by installing a proprietary, small-footprint 
PepAgent within the customer environment. PepAgent continuously collects and 
correlates hundreds of real-time operational metrics, including host-level CPU, RAM, disk 
I/O, and network metrics, as well as job, task, queue, workflow, and user info. This data is 
then aggregated to inform Capacity Optimizer's decision making and to power the graphs 
and insight within Pepperdata's observability dashboard.


, PepAgent is installed inside each node in the cluster. 
The PepAgent footprint is approximately one percent of one core and 300 MB of 
memory. PepAgent collects hundreds of metrics every five seconds and provides these 
metrics to Capacity Optimizer. These metrics serve as the source of the granular cluster-
level and application-level data presented in Pepperdata's customer dashboard.


, PepAgent runs as a service, and makes use of 
Prometheus6 as a bundled component to provide key optimization metrics to Capacity 
Optimizer. Pepperdata developed a specialized configuration for Prometheus that 
reduces memory footprint by nearly tenfold so that, even in highly-scaled customer 
environments, Pepperdata Capacity Optimizer with Prometheus as a bundled component 
exhibits a very small memory footprint, which supports stability and reliability.


PepperdataSupervisor Agents then write metrics data to a Local File System. 
PepCollector Agents read those files and send them to the Pepperdata Dashboard via the 
Pepperdata Backend.




6 Prometheus.io

Page 7

Figure 6: Pepperdata’s architecture. Data collected by PepAgents is used to inform Capacity 
Optimizer's decision making as well as power the graphs and insight within Pepperdata's 
observability dashboard.

© 2024 Pepperdata, Inc. All rights reserved.

https://prometheus.io/


Figure 7: Pepperdata’s dashboard highlights the power of Capacity Optimizer in reducing both 
overall instance hours and the peak instance hour requirement at maximum ramp up for a  
single application.

The Power of Capacity Optimizer With a Real-World Application


Consider the power of Pepperdata Capacity Optimizer when applied to just a single 
application. The following chart taken from Pepperdata’s dashboard highlights the 
waste that occurs in one example Spark application selected at random from among 
the millions that Capacity Optimizer supports every day:


Without Capacity Optimizer, this sample application required 57 total hours of the 
m5.xlarge instance to run, with a maximum ramp up to 50 instance hours. When the 
same application was run again with Capacity Optimizer enabled, the total instance 
hours dropped to 35—a 39 percent decrease—and the peak dropped in half, to 23.


This single application with its modest resource requirements illustrates how similar 
results occur at scale across the millions of applications whose performance 
Pepperdata optimizes every year.



Pepperdata provides the greatest benefit for large, complex, multi-tenant clusters 
where costs run high and where manual tuning effort is limited by the scale and scope 
of the environment. In such environments, with large numbers of concurrently running 
applications, Pepperdata’s Continuous Intelligent Tuning remediates application-level 
waste autonomously and in real time, contributing an average of 30 percent additional 
savings for most all organizations running Apache Spark.


In environments where only a single executor exists per node, and where applications 
are designed to be single tenant down to the executor level, Capacity Optimizer may 

Environmental Considerations


Page 8© 2024 Pepperdata, Inc. All rights reserved.



not have the necessary conditions to do its job effectively. This is because no other 
application can be serviced with the leftover, unused resources from that single 
application. Implementing a cost optimization solution such as instance rightsizing or 
manual tuning can reduce infrastructure-level waste for these single-tenant 
environments. However, applications in this type of environment will continue to 
generate the waste unique to the problem of application overprovisioning. 


Serverless environments, which are designed for practitioners seeking minimal 
operational overhead, are currently not supported by Capacity Optimizer.


Alongside its autonomous cost optimization, Pepperdata also provides full-stack 
observability and real-time insights into Apache Spark workloads on prem or in the 
cloud. Pepperdata’s observability dashboard offers deep insights into application 
performance, cluster health, and cost metrics that are not readily available through 
general-purpose monitoring or out-of-the-box performance management tools. 
Executives, platform teams, and applications teams can use this knowledge to improve 
decision making about their Amazon EMR and EKS environments. 


The deep observability features included with Pepperdata Capacity Optimizer work by 
instrumenting every node of a cluster with the small-footprint PepAgent, which 
continuously collects and correlates hundreds of real-time operational metrics, 
including host-level CPU, RAM, disk I/O, and network metrics, as well as job, task, 
queue, workflow, and user info. The single pane of glass of the Pepperdata dashboard 
enables users to make intelligent decisions based on these correlated real-time 
operational metrics, and to quickly diagnose, troubleshoot, and resolve both cluster-
wide and low-level application issues.


Pepperdata Observability

Figure 8: Pepperdata’s full-stack observability complements its autonomous optimization to 
obtain deep insight into your Amazon EMR and Amazon EKS environments.

Page 9© 2024 Pepperdata, Inc. All rights reserved.

https://www.pepperdata.com/capacity-optimizer-resource-optimization


As compared to general-purpose monitoring or out-of-the-box performance 
management tools, the Pepperdata Dashboard provides everything needed for holistic, 
enterprise-wide platform observability—and therefore insight and control—at both the 
cluster and the application level.


The combination of Pepperdata’s autonomous cost optimization plus additional 
observability features empowers customers to both optimize and understand the 
performance and cost of large-scale data analytics clusters and applications.


Pepperdata Security Policies, 
Procedures, and Certifications

As a SOC 2® Type 17 compliant company, Pepperdata maintains a comprehensive, 
written information security program that actively monitors and manages 
vulnerabilities to ensure all software is compliant with SOC reporting requirements.


Pepperdata’s security program is based on a strict set of Data Protection guidelines and 
Security Policies:


� Pepperdata has no access to data or applications inside a customer’s environment�
� Transport-level encryption is always in effect between a customer’s cluster and 

Pepperdata. Communication between users and the Pepperdata dashboard 
requires secure HTTPS access. Sensitive data is encrypted both at rest and in transit 
to prevent unauthorized access or interception.�

� Pepperdata’s dashboard is read only. Underlying data and applications are never 
changed in any way by Pepperdata.�

� Access to Pepperdata’s dashboard is via secure user authentication. Pepperdata 
collects an audit trail of which pages are viewed whenever a user logs in.


� Pepperdata’s internal security policies include procedures and strict guidelines for 
employees regarding access control, incident response, and acceptable use of 
company resources�

� Pepperdata performs a variety of security-related testing to keep current with 
security recommendations and evaluates and implements new security services and 
features regularly. These include regular security audits to identify and assess 
potential security risks, vulnerabilities, and threats and make continuous 
improvements to Pepperdata’s security program.


For more information about Pepperdata Security Policies, please contact us at 
info@pepperdata.com to request a copy of our Security Whitepaper.


Data Protectio�

Security Policy Implementation and Ongoing Audit�

7 SOC 2® - SOC for Service Organizations: Trust Services Criteria

Page 10© 2024 Pepperdata, Inc. All rights reserved.

mailto:info@pepperdata.com
https://www.aicpa-cima.com/topic/audit-assurance/audit-and-assurance-greater-than-soc-2


Given that 30 percent (or more) of cloud computing services regularly goes to waste8, 
and as minimizing that waste has become the top priority for FinOps practitioners9, 
cloud cost optimization has become essential. Cloud cost optimization enables 
practitioners to mitigate the waste inherent in many applications and extract the most 
value out of their cloud investment.


Pepperdata Capacity Optimizer is a lightweight, highly scaled cost optimization solution 
that remediates waste and cost overruns in some of the world’s largest, most complex 
cloud and on-premises clusters. By automatically packing additional pending jobs on 
underutilized nodes/pods through autonomous tuning, Capacity Optimizer increases 
node/pod utilization and maximizes the efficiency of thousands of workloads without 
requiring an investment in additional resources. This translates directly to reduced 
instance hours and cost, greater efficiency, improved performance, and ultimately 
ongoing customer satisfaction.


Hardened and battle tested since 2012, Pepperdata has saved its customers an 
estimated $200 million in that time. Pepperdata is currently deployed on 20,000+ 
clusters per month for both optimization and observability on some of the largest and 
most complex cloud deployments in the world.


For a demo or to learn more about utilizing Pepperdata in your environment, please 
contact us at info@pepperdata.com.

Solving the Challenge  
of Cloud Cost Control

CONCLUSION

8 Flexera’s State of the Cloud 2024 Report


9 FinOps Foundation’s State of FinOps 2024 Report

Page 11© 2024 Pepperdata, Inc. All rights reserved.

https://www.pepperdata.com/summary-value
https://www.pepperdata.com/summary-value
https://www.pepperdata.com/resource-category/case-studies/
https://www.pepperdata.com/resource-category/case-studies/
mailto:info@pepperdata.com
https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Organic%20Search
https://prometheus.io/


Methodology


Parameters


Results


Pepperdata selected TPC-DS9, the decision support benchmark from the Transaction 
Processing Performance Council (TPC), as the standardized workload model. TPC-DS is 
a commonly used benchmark for measuring compute performance. Pepperdata used a 
GitHub repository recommended by Amazon Web Services (AWS) that closely adheres 
to the TPC-DS model for benchmarking purposes. Pepperdata ran this benchmark “out 
of the box” and did not modify or recompile them using any special libraries. (Note: 
This work is not an official audited benchmark as defined by TPC.)


Pepperdata set up the Spark benchmarking test environment on Amazon EMR 7.0 using 
Graviton instance types to test Pepperdata Capacity Optimizer. 


Pepperdata ran this workload three times both with and without Capacity Optimizer to 
capture the “before and after” effects of Capacity Optimizer.


The benchmark results show that for Spark workloads running on Amazon EMR 7.0, 
Pepperdata Capacity Optimizer�

� Decreased total instance hours consumed by 51 percen�
� Increased overall throughput, increasing concurrent container count by 57 percen�
� Improved memory utilization by 65 percent, thus increasing performanc�
� Increased CPU utilization by 82 percent to enable more efficient processing


Further detail is available in the full report, Pepperdata Reduces the Cost of Running 
Spark Workloads on Amazon EMR 7.0 by 51%. 

Appendix 1: Benchmarking with Amazon EMR 7.0 
May 2023

APPENDICES

9 TPC-DS is a Decision Support Benchmark

Page 12© 2024 Pepperdata, Inc. All rights reserved.

https://www.pepperdata.com/resource/benchmark-pepperdata-reduces-cost-spark-emr-7-51-percent/
https://www.pepperdata.com/resource/benchmark-pepperdata-reduces-cost-spark-emr-7-51-percent/
https://www.tpc.org/tpcds/


Methodology


Results


Pepperdata selected TPC-DS10, the decision support benchmark from the Transaction 
Processing Performance Council (TPC), as the standardized workload model. TPC-DS is 
a commonly used benchmark for measuring compute performance. Pepperdata used a 
GitHub repository recommended by Amazon Web Services (AWS) that closely adheres 
to the TPC-DS model for benchmarking purposes. Pepperdata ran this benchmark “out 
of the box” and did not modify or recompile them using any special libraries. (Note: 
This work is not an official audited benchmark as defined by TPC.)


Pepperdata set up a Spark benchmarking test environment on Amazon EKS to test 
Pepperdata Capacity Optimizer for large-scale workloads. 


Pepperdata ran this workload both with and without Capacity Optimizer to capture the 
“before and after” effect of Capacity Optimizer.


On Amazon EKS, Capacity Optimizer decreased instance hours and cost by 41.8 
percent. Additionally, Pepperdata Capacity Optimizer also improved average memory 
and core utilization, which enables greater throughput. Average memory utilization 
increased 6.4 percent while average core utilization increased 87.5 percent, a 
significant uplift. 


Further detail is available in the full report Pepperdata Reduces the Cost of Running 
Spark Workloads on Amazon EKS at Scale by 41.8%. 


Parameters


Appendix 2: Pepperdata Benchmarking on Amazon EKS  
October 2023

10 TPC-DS is a Decision Support Benchmark

Page 13© 2024 Pepperdata, Inc. All rights reserved.

https://www.pepperdata.com/resource/tpc-ds-benchmark-spark-workloads-amazon-eks-pepperdata/
https://www.pepperdata.com/resource/tpc-ds-benchmark-spark-workloads-amazon-eks-pepperdata/
https://www.tpc.org/tpcds/


Financial Services Giant Saves 
$20M with Pepperdata Real-
Time Cost Optimization

Global Technology Brand Name 
Realizes up to 25% Cost Savings 
on Amazon EMR with 
Pepperdata

On Premises

Migration from  
On Premises  
to Amazon EMR

FORTUNE 10 
TECH COMPANY

FORTUNE 50 
BANK

Appendix 3: Dramatic Results at Scale in Real-World  
Customer Environments

CUSTOMER ENVIRONMENT CASE STUDY

Autodesk Reduces Amazon EMR 
Costs by 50% and Boosts 
Performance with Pepperdata

Within Five Days, Pepperdata 
Reduced Extole’s Amazon 
EC2 Compute Cost by an 
Additional 30 Percent

Pepperdata Reduced the 
Cost of Amazon EMR on EKS 
by 42.5%

Pepperdata Saves Large 
Consumer Internet Company 
33% for Apache Spark on 
Amazon EKS

Amazon EMR

FORTUNE 10 
TECH COMPANY

FORTUNE 500 
CONSUMER  

BRAND

Amazon EMR

Amazon EMR on EKS

Amazon EKS with special 
focus on�

� Karpenter for 
advanced autoscalin�

� YuniKorn for 
advanced scheduling

Page 14© 2024 Pepperdata, Inc. All rights reserved.

https://www.pepperdata.com/resource/finserv-company-saves-20-million
https://www.pepperdata.com/resource/finserv-company-saves-20-million
https://www.pepperdata.com/resource/finserv-company-saves-20-million
https://aws.amazon.com/blogs/apn/how-a-global-technology-firm-realized-up-to-25-percent-cost-savings-on-amazon-emr-with-pepperdata/
https://aws.amazon.com/blogs/apn/how-a-global-technology-firm-realized-up-to-25-percent-cost-savings-on-amazon-emr-with-pepperdata/
https://aws.amazon.com/blogs/apn/how-a-global-technology-firm-realized-up-to-25-percent-cost-savings-on-amazon-emr-with-pepperdata/
https://aws.amazon.com/blogs/apn/how-a-global-technology-firm-realized-up-to-25-percent-cost-savings-on-amazon-emr-with-pepperdata/
https://www.pepperdata.com/resource/autodesk-reduces-amazon-emr-costs-boosts-performance
https://www.pepperdata.com/resource/autodesk-reduces-amazon-emr-costs-boosts-performance
https://www.pepperdata.com/resource/autodesk-reduces-amazon-emr-costs-boosts-performance
https://www.pepperdata.com/resource/extole-exceeds-expectations-cloud-cost-resource-optimization-pepperdata
https://www.pepperdata.com/resource/extole-exceeds-expectations-cloud-cost-resource-optimization-pepperdata
https://www.pepperdata.com/resource/extole-exceeds-expectations-cloud-cost-resource-optimization-pepperdata
https://www.pepperdata.com/resource/extole-exceeds-expectations-cloud-cost-resource-optimization-pepperdata
https://www.pepperdata.com/blog/pepperdata-reduces-cost-amazon-emr-eks-42-percent
https://www.pepperdata.com/blog/pepperdata-reduces-cost-amazon-emr-eks-42-percent
https://www.pepperdata.com/blog/pepperdata-reduces-cost-amazon-emr-eks-42-percent
https://www.pepperdata.com/resource/internet-company-saves-33-percent-spark-eks
https://www.pepperdata.com/resource/internet-company-saves-33-percent-spark-eks
https://www.pepperdata.com/resource/internet-company-saves-33-percent-spark-eks
https://www.pepperdata.com/resource/internet-company-saves-33-percent-spark-eks


CUSTOMER ENVIRONMENT CASE STUDYResources

�� Blog Series: 

�� Benchmark:

�� Benchmark:

�� Case Study: 

�� Case Study:

�� Case Study: 

�� Case Study: 

�� Case Study: 

�� Case Study: 

��� Data Sheet: 

��� Solution Brief: 

��� Solution Brief: 

The Five Myths of Apache Spark Optimizatio�

�� Myth 1: Observability & Monitorin�

�� Myth 2: Cluster Autoscalin�

�� Myth 3: Instance Rightsizin�

�� Myth 4: Manual Application Tunin�

�� Myth 5: Spark Dynamic Allocatio�

�� I've Done All I Can: A Bonus Myth and a Solutio�

 Pepperdata Reduces the Cost of Running Spark Workloads on Amazon 

EMR 7.0 by 51�

 Pepperdata Reduces the Cost of Running Spark Workloads on Amazon 

EKS at Scale by 41.8�

Financial Services Giant Saves $20M with Pepperdata Real-Time Cost 

Optimizatio�

 Global Technology Brand Name Realizes up to 25% Cost Savings on 

Amazon EMR with Pepperdat�

Autodesk Reduces Amazon EMR Costs by 50% and Boosts Performance 

with Pepperdat�

Within Five Days, Pepperdata Reduced Extole’s Amazon EC2 Compute 

Cost by an Additional 30 Percen�

Pepperdata Reduced the Cost of Amazon EMR on EKS by 42.5�

Pepperdata Saves Large Consumer Internet Company 33% for Apache 

Spark on Amazon EK�

Pepperdata Capacity Optimize�

Pepperdata for Amazon EM�

Pepperdata for Amazon EKS

Page 15© 2024 Pepperdata, Inc. All rights reserved.

https://www.pepperdata.com/blog/myth-1-of-apache-spark-optimization-observability-monitoring/
https://www.pepperdata.com/blog/myth-2-of-apache-spark-optimization-autoscaling/
https://www.pepperdata.com/blog/myth-3-of-apache-spark-optimization-rightsizing/
https://www.pepperdata.com/blog/myth-apache-spark-optimization-manual-tuning/
https://www.pepperdata.com/blog/myth-apache-spark-optimization-dynamic-allocation/
https://www.pepperdata.com/blog/bonus-myth-apache-spark-optimization/
https://www.pepperdata.com/resource/benchmark-pepperdata-reduces-cost-spark-emr-7-51-percent/
https://www.pepperdata.com/resource/benchmark-pepperdata-reduces-cost-spark-emr-7-51-percent/
https://www.pepperdata.com/resource/tpc-ds-benchmark-spark-workloads-amazon-eks-pepperdata/
https://www.pepperdata.com/resource/tpc-ds-benchmark-spark-workloads-amazon-eks-pepperdata/
https://www.pepperdata.com/resource/finserv-company-saves-20-million
https://www.pepperdata.com/resource/finserv-company-saves-20-million
https://aws.amazon.com/blogs/apn/how-a-global-technology-firm-realized-up-to-25-percent-cost-savings-on-amazon-emr-with-pepperdata/
https://aws.amazon.com/blogs/apn/how-a-global-technology-firm-realized-up-to-25-percent-cost-savings-on-amazon-emr-with-pepperdata/
https://www.pepperdata.com/resource/autodesk-reduces-amazon-emr-costs-boosts-performance
https://www.pepperdata.com/resource/autodesk-reduces-amazon-emr-costs-boosts-performance
https://www.pepperdata.com/resource/extole-exceeds-expectations-cloud-cost-resource-optimization-pepperdata
https://www.pepperdata.com/resource/extole-exceeds-expectations-cloud-cost-resource-optimization-pepperdata
https://www.pepperdata.com/blog/pepperdata-reduces-cost-amazon-emr-eks-42-percent
https://www.pepperdata.com/resource/internet-company-saves-33-percent-spark-eks
https://www.pepperdata.com/resource/internet-company-saves-33-percent-spark-eks
https://www.pepperdata.com/resource/capacity-optimizer-datasheet
https://www.pepperdata.com/resource/pepperdata-for-amazon-emr
https://www.pepperdata.com/resource/pepperdata-for-amazon-eks


About us
Founded in 2012 in Silicon Valley, Pepperdata has saved enterprises over $200 by 
optimizing performance of their large-scale data-analytics investments both on premises 
and in the cloud. Pepperdata Capacity Optimizer is the only real-time cost optimization 
solution that delivers up to 47 percent greater cost savings—continuously and 
autonomously—with no application changes, no recommendations, or manual tuning 
required. Our customers include the largest, most complex, and highly-scaled clusters in 
the world, at top enterprises such as Citibank, Autodesk, IQVIA, Royal Bank of Canada, and 
those in the Fortune 5. For more information, visit pepperdata.com.


