pepperdatae

BENCHMARK

Pepperdata Reduces the Cost of Running Spark
Workloads on Amazon EMR 7.0 by 51%

Benchmark Results Using a TPC-DS Model on Amazon EMR 7.0 at Scale

Introduction

Given that 30 percent (or more) of
cloud computing services
regularly goes to waste, and as
minimizing that waste has become
the top priority for FinOps
practitioners, cloud cost
optimization has become
essential. Cloud cost optimization
enables practitioners to mitigate
the waste inherent in many
applications and extract the most
value out of their cloud
investment.

Pepperdata Capacity Optimizer
has improved resource utilization
and optimized price/performance
in some of the most complex and
highly-scaled enterprises around
the globe over the last decade.

Because each enterprise
environment is different,
Pepperdata embarked upon third-
party benchmarking to provide an
objective standard against which
to measure the true power of
Capacity Optimizer in reducing
waste and unnecessary spend on
Amazon EMR 7.0 in an AWS
Graviton-based cluster. The
Graviton instance type was chosen
after testing several instance types
to determine which delivered the
best price/performance for this
benchmarking effort.

© 2024 Pepperdata, Inc. All rights reserved. 1

Standardized Benchmark Methodology

Pepperdata selected TPC-DS, the decision support benchmark
from the Transaction Processing Performance Council, as the
standardized workload model. TPC-DS is a commonly used
benchmark for measuring compute performance. Pepperdata
used a GitHub repository recommended by Amazon Web
Services (AWS) that closely adheres to the TPC-DS model for
benchmarking purposes. Pepperdata ran this benchmark “out
of the box” and did not modify or recompile them using any
special libraries. (Note: This work is not an official audited
benchmark as defined by TPC.)

Benchmark Environment and Execution

Pepperdata set up the Spark benchmarking test environment
on Amazon EMR 7.0 using Graviton instance types to test
Pepperdata Capacity Optimizer according to the following
parameters:

* Workload: TPC-DS with Spark SQL (104 queries)
* Amazon EMR version: 7.0.0
* Graviton instance types:
+ Master node instance type: m7g.xlarge
+ Core node instance type (min: 1, max: 1): c7g.8xlarge
+ Task node instance type (min: 1, max: 50): c7g.8xlarge
* Apache Spark configuration:
+ spark.driver.cores: 4
*+ spark.driver.memory: 6g
* spark.executor.cores: 4
*+ spark.executor.memory: 6g
+ spark.executor.memoryOverhead: 2g
+ spark.dynamicAllocation.enabled: TRUE
+ spark.dynamicAllocation.maxExecutors: 200

Pepperdata ran this workload three times both with and
without Capacity Optimizer to capture the “before and after”
effects of Capacity Optimizer.


https://info.flexera.com/CM-REPORT-State-of-the-Cloud-2023-Thanks?revisit
https://data.finops.org/#11900
https://data.finops.org/#11900
https://www.pepperdata.com/capacity-optimizer-resource-optimization
https://www.pepperdata.com/capacity-optimizer-resource-optimization
https://www.pepperdata.com/resource-category/case-studies/
https://www.pepperdata.com/resource-category/case-studies/
https://www.pepperdata.com/resource-category/case-studies/
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/graviton/
https://www.tpc.org/tpcds/

Key Performance Metrics

Pepperdata used the following metrics to assess the performance and effectiveness of Capacity Optimizer:

+ Total instance hours consumed

+ Average concurrent container count
+ Memory Utilization

+ CPU Utilization

All of these metrics were obtained through the Pepperdata dashboard. The Pepperdata dashboard gathers
and aggregates hundreds of cluster metrics in near real time to provide visibility into the performance of all
applications running in a cloud environment via a single pane of glass.

Summary of Key Findings

Using the standardized workload and benchmark environment described above, Pepperdata measured

the following:

Total Instance Hours Consumed
25.0

20.0 51% decrease

(lower is better)
15.0

10.0
5.0

0.0

Figure 1: Total instance hours consumed
decreased by 51%.

The 51 percent reduction that Capacity
Optimizer achieved in this environment
translates to reduced cost, since cloud pricing is
directly correlated with instance hour utilization.

Memory Utilization Ratio

0.80 65% increase
(higher is better)

0.60

0.40

0.20

0.00

Figure 3: Memory utilization increased by 65%.
Increased memory utilization means that
Capacity Optimizer enabled Amazon EMR 7.0 to
run workloads more efficiently, leading to
improved performance.

Average Concurrent Container Count
10.0

57% increase
(higher is better)

8.0

6.0

4.0

20

0.0

Figure 2: Average concurrent container count
increased by 57%.

By increasing the average concurrent container
count by 57 percent, Capacity Optimizer
increased the ability of Amazon EMR 7.0 to
process applications, thereby improving overall
throughput.

82% increase
(higher is better)

CPU Utilization Ratio
0.40

0.20

0.10

0.00

Figure 4: CPU utilization increased by 82%.
Increased CPU utilization indicates that Capacity
Optimizer enabled Amazon EMR 7.0 to process
more tasks and more efficiently utilize its
processing power.

© 2024 Pepperdata, Inc. All rights reserved. 2



Cost Ratio Findings

In addition, Pepperdata compared the instance hours required to run all 104 queries both with and without
Capacity Optimizer. Instance hours utilized by each query correlates directly to cost in the cloud
environment. The more instance hours used, the higher the cloud bill at the end of the month. Pepperdata
calculated and charted a ratio of two numbers for each of the 104 TPC-DS queries:

instance hours required WITH Capacity Optimizer

instance hours required WITHOUT Capacity Optimizer

« If Capacity Optimizer had no impact on the number of instance hours required to run a query, this ratio
would be one.

« If Capacity Optimizer decreased the number of instance hours required to run a query, this number
would be less than one. This is a desirable outcome because fewer instance hours means lower
cost.

+ If Capacity Optimizer increased the number of instance hours required to run a query, this number
would be greater than one.

The following chart displays the query-by-query results that Pepperdata calculated. All the queries except
one (Query 67) resulted in significant instance hour savings versus running the query without Capacity
Optimizer enabled.

Instance Hour Ratio: With Capacity Optimizer / Without Capacity Optimizer
1.25

Average 51% decrease
(lower lines are better)

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

The power of Capacity Optimizer is in safely reducing the amount of resources required to run applications.
As one the longest-running and CPU-intensive queries in the dataset, Query 67 benefited from excess pre-
configured capacity to schedule more Spark-level tasks, allowing it to take advantage of the additional
parallelism. In this way, the original provisioned capacity was ideal for Query 67 but wasted for all other
queries. The Capacity Optimizer parameters for this benchmark were chosen to optimize for cost, meaning
that fewer resources were available in general, which led to the longer Query 67 runtime to accommodate
its peak requirements. A less aggressive set of parameters more attuned to SLA requirements would have
provided Query 67 more resources to complete faster.

Total Workload Runtime (minutes)
40.0

6% increase

Overall Duration Results

Although overall duration was not a primary metric 300
of interest in evaluating the effectiveness of Capacity
Optimizer, Pepperdata did observe an approximate
6% increase in the overall runtime of the entire suite
of queries.

20.0

0.0

© 2024 Pepperdata, Inc. All rights reserved. 3



Based on this criteria it is important to note that the Capacity Optimizer parameters selected for this
benchmarking effort were chosen to be relatively aggressive since this benchmarking workload had a
primary function of exploring instance hour count and container, CPU, and memory utilization related to
costs. In a real-world customer environment, these parameters could be set less aggressively for more SLA-
sensitive workloads, which would reduce the overall run-time duration.

Less aggressive settings would also result in a cost optimization below the 51 percent that was achieved in
this benchmarking work. Importantly, less aggressive settings could also enable a potentially equal or
even reduced workload runtime to meet or exceed SLA goals. Pepperdata provides this level of
flexibility in its Capacity Optimizer settings to enable customers to tailor the desired level of optimization to
a particular cluster’s business and performance requirements.

Conclusion

Pepperdata’s benchmarking work demonstrates that running a simulated TPC-DS industry-standard
Apache Spark workload on Amazon EMR 7.0 with Pepperdata Capacity Optimizer demonstrated significant
cost savings and performance improvements. Capacity Optimizer reduced the total instance hours and
related costs by an average 51 percent (from 22.9 instance hours to 11.3 instance hours) and enabled
workloads to utilize 65 percent more memory and 82 percent more CPU. In addition, Capacity Optimizer
increased the average concurrent container count by 57 percent, meaning that more applications were
able to run in a given time period, increasing the overall throughput of the environment.

As more companies migrate workloads to the cloud, these findings have important implications for cost
and resource management. Capacity Optimizer’s ability to autonomously optimize workloads such as
Apache Spark on Amazon EMR 7.0 helps ensure that cloud resources are used efficiently and cost-
effectively, making the cloud an even more attractive and viable option for Spark and other high-
performance workloads.

Learn more about Capacity Optimizer here or explore a free Proof of Value in your environment. It takes
only six hours for Pepperdata to show you how much you can save. Please contact us directly at
info@pepperdata.com for more information.

Pepperdata installs in under 30 minutes in
most enterprise environments. We
guarantee a minimum of 100% ROI, with a
typical ROl between 100% and 660%.

About Pepperdata

Pepperdata is the only cost optimization solution that

. 0 N .
.dellvers.up to 47% greater cost savings Fontmuou;ly gnd Pepperdata, Inc.
in real-time—on Amazgn EMR and EKS W|th no application 530 Lakeside Drive
changes or manual tuning. Our customers include the Suite 170

Start a Free PoV
@ www.pepperdata.com

largest, most complex, and highly-scaled clusters in the Sunnyvale, CA 94085 @ send an Email

world, at top enterprises such as Citibank, Autodesk, eval@pepperdata.com
Royal Bank of Canada, and those in the Fortune 5.

For more information, visit pepperdata.com.

© 2024 Pepperdata, Inc. All rights reserved.


https://www.pepperdata.com/capacity-optimization/
https://www.pepperdata.com/free-cost-optimization-proof-of-value
mailto:info@pepperdata.com
http://www.pepperdata.com
mailto:eval@pepperdata.com
https://pepperdata.com/free-cost-optimization-proof-of-value

